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Consensus Tracking of Second Order Multi-agent Systems with Distur-
bances under Heterogenous Position and Velocity Topologies
Xuxi Zhang* and Xianping Liu

Abstract: In this paper, the consensus tracking problem of second order multi-agent systems with disturbance
is studied under heterogenous position and velocity topologies. The cases that the disturbances are generated
from linear exosystems and nonlinear exosystems are considered, respectively. For achieving consensus, linear
disturbance observer and dynamic-gain-based nonlinear disturbance observer using only the velocity information
of the agents are proposed, and then control protocols and sufficient conditions for solving the consensus problem
are given. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed disturbance
observers and control protocols.
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1. INTRODUCTION

During the past decades, the cooperative control of
multi-agent systems has attracted great attention from var-
ious fields such as biology, physics, computer science, ap-
plied mathematics and control engineering, due to its wide
practical applications in many areas, such as formation
control of mobile robots, satellite formation flying, coop-
erative control of unmanned air vehicles, flocking of social
insects, distributed control of communication networks,
and rendezvous [1–6], etc. Meanwhile, the consensus of
multi-agent systems is an essential cooperation behavior,
whose main objective is to design consensus protocols for
the agents using only local relative information between
neighboring agents to drive the states of all agents reach
some common features [7].

The consensus problem for multi-agent systems has
been widely studied from various perspectives, and many
types of consensus protocols have been proposed in the
literature [8–11]. The consensus problem for first-order
multi-agent systems has been firstly investigated [12–15].
Specifically, it was shown in [12] that the network con-
nectivity is an influential aspect for reaching consensus.
In [13], the authors demonstrated that one of the sufficient
and necessary conditions for reaching consensus is that the
communication topology graph contains a directed span-
ning tree. Due to the fact that, in real applications, the
dynamics of agents are usually modeled by second-order
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integrator, especially in some mechanical systems. Thus,
the research of consensus problem of second-order multi-
agent systems is of great importance [16–20]. For second
order multi-agent systems, it was verified in [16] that the
existence of a directed spanning tree is only a necessary
condition to achieve consensus. In [17], the consensus
problem was considered for multi-agent systems with dis-
crete second-order dynamics. In [18], the second order
consensus has been investigated for multi-agent systems
with sampled data. In [20], some sufficient conditions
have been proposed for achieving consensus of second-
order multi-agent systems with nonlinear dynamics. Fur-
thermore, the consensus problem has also been studied
from various aspects. For example, consensus problem of
linear multi-agent systems were studied in [21–23], con-
sensus of agents with nonlinear dynamics were investi-
gated in [24, 25], consensus of multi-agent systems with
either time-varying delays or switching topologies were
explored in [26, 27], and consensus problem for Marko-
vian jump multi-agent systems have been discussed in
[28, 29].

In practical implementation, the dynamics of the agents
in a network are always severely affected by various exter-
nal disturbances due to the complex environment [30–35].
For example, in [31], a disturbance observer-based con-
trol approach was proposed for the consensus problem of
second-order multi-agent systems with exogenous distur-
bances, which were assumed to be generated from some
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linear exosystems, and some sufficient conditions for
achieving consensus were given by using linear matrix
inequality. In [33], consensus problem of second order
multi-agent systems with disturbances was further investi-
gated by applying the input-to-state stability and dynamic
gain technique when the external disturbances were gen-
erated by linear exosystems and nonlinear exosystems, re-
spectively. In [34], robust synchronization problem of dy-
namical networks with impulsive disturbances was inves-
tigated, and some sufficient conditions have been derived
to ensure the robust exponential synchronization by using
stability analysis for impulsive delay systems.

Note that, most of the aforementioned works mainly
focus on studying the consensus problem of multi-agent
systems under the assumption that the position and veloc-
ity interactions are described by the identical topologies,
which will give rise to homogeneous communication net-
works [36]. However, in reality, the position and velocity
interactions among agents are usually transmitted over dif-
ferent network topologies for various reasons, for exam-
ple, the position and velocity of agents are often measured
by different techniques, different sensors are inclined to
equip the agents for measuring the position and velocity,
respectively [37], and information loss may also lead to
the heterogeneous topologies. Unfortunately, up to now,
very little attention has been made on the consensus prob-
lem of multi-agent systems subject to disturbances when
the position and velocity measurements are communicated
over different network topologies.

Motivated by the above discussions, in this paper, un-
der the assumption that the position and velocity inter-
actions are characterized by different network topologies,
we aim to investigate the consensus tracking problem of
second order multi-agent systems with disturbances gen-
erated from some linear exosystems and nonlinear exosys-
tems, respectively. The main contributions of this paper
are stated as follows: 1) new disturbance observers, which
do not need the position information of agents, are pro-
posed to compensate the disturbances generated from het-
erogeneous linear exosystems and nonlinear exosystems,
respectively; 2) the consensus tracking problem of multi-
agent systems is investigated for the case that the posi-
tion and velocity are communicated over different network
topologies, which include the problem studied in [33] as
a special case when the position and velocity interactions
have the identical topologies.

The rest of the paper is organized as follows: Section 2
gives the preliminaries and problem formulation. In Sec-
tion 3, the disturbance observers and observer-based pro-
tocols are proposed. In Section 4, simulation examples are
provided to illustrate the designed scheme. Finally, con-
clusions are shown in Section 6.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Preliminaries
In this subsection, we introduce some basic definitions

and results about algebraic graph theory [38]. Let G =
(V,E,A) be a weighted digraph of order N, with a set of
nodes V = {v1,v2, · · · ,vN}, a set of edges E ⊆V ×V , and
a weighted adjacency matrix A = (ai j) ∈ RN×N . An edge
(vi,v j) of G representing that node vi and v j can get infor-
mation with each other. ai j > 0 if and only if (v j,vi) ∈ E,
and ai j = 0, otherwise. The set of neighbors of every node
vi is Nvi = {v j : (v j,vi) ∈ E}. A path of G is an ordered
sequence of distinct nodes in V such that any consecutive
nodes in the sequence correspond to an edge of the graph.
The graph is called connected if there exists a path from vi

to v j for any two nodes vi,v j ∈V .
The Laplacian matrix L = (li j) ∈ RN×N of a weighted

graph is described by

lii =
N

∑
j=1, j ̸=i

ai j, li j =−ai j, i ̸= j.

2.2. Problem formulation
Consider a multi-agent system consisting of N follow-

ers labeled from 1 to N, and one leader indexed by 0. The
dynamics of agent i is governed by

ẋi = vi,

v̇i = ui +di, i = 1,2, · · · ,N, (1)

where xi ∈ Rn, vi ∈ Rn and ui ∈ Rn are the position, the
velocity and the control input of agent i, respectively. di is
the external disturbance that is generated from some linear
exosystems or some nonlinear exosystems, which will be
specified later.

The dynamics of the leader is described by

ẋ0 = v0,

v̇0 = a0(t), (2)

where x0,v0,a0(t) ∈ Rn with initial state (x0(0),v0(0)).
With the preceding preparations, we are now ready to

introduce our problem.
The problem of consensus tracking for the multi-agent

systems consisting of (1) and (2) is to design control pro-
tocols ui such that the N agents in (1) achieve consensus
in the sense of limt→∞ ∥xi(t)− x0(t)∥ = 0, limt→∞ ∥vi(t)−
v0(t)∥= 0,∀i = 1,2, · · · ,N.

To make the problem precise, let G p = (V,E p,Ap) with
Ap =(ai j) and Gv =(V,Ev,Av) with Av =(bi j) denote the
network topologies of position and velocity among all the
N agents, respectively. Moreover, the position neighbor
set and velocity neighbor set of agent i in G p and Gv are
denoted by N p

i = {v j : ai j > 0} and N v
i = {v j : bi j > 0},

respectively.
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3. MAIN RESULTS

3.1. Consensus tracking with disturbances generated
from heterogeneous linear exosystems

In this subsection, we explore the consensus tracking
problem of multi-agent systems (1) and (2) with distur-
bances that are generated from some heterogeneous linear
exosystems of the following form

ξ̇i = Eiξi,

di = Fiξi, i = 1,2, · · · ,N, (3)

where ξi ∈ Rqi is the state of the exosystem (3), and the
matrix pair (Ei,Fi) is observable.

Now, in order to compensate the disturbances caused by
the linear exosystems (3), a disturbance observer is pro-
posed as follows:

żi = (Ei −KiFi)(zi +Kivi)−Kiui,

ξ̂i = zi +Kivi, (4)

d̂i = Fiξ̂i,

where zi ∈ Rqi is the state of the observer (4), Ki is the
observer gain matrix that will be determined later, ξ̂i and
d̂i denote the estimates of ξi and di, respectively.

By denoting the error between ξi and ξ̂i as

ei = ξi − ξ̂i, (5)

we have from (1), (3) and (4) that

ėi = (Ei −KiFi)ei. (6)

Then, we have the following Lemma, which shows that
the disturbance observer (4) can asymptotically track the
disturbances generated from (3).

Lemma 1: The error system (6) is globally asymptoti-
cally stable, if the observer gain matrix Ki is chosen such
that the matrix Ei −KiFi is Hurwitz.

Remark 1: Note that, compared with the disturbance
observer proposed in [33], the observer (4) in this paper
does not require the information of xi and thus is more
simple and suitable for applications.

Based on the disturbance observer (4), we propose a
consensus tracking protocol as follows

ui = ∑
j∈N p

i

ai j(x j − xi)+ai0(x0 − xi)+ ∑
j∈N v

i

bi j(v j − vi)

+bi0(v0 − vi)+a0(t)− d̂i, (7)

where the control gain ai0 > 0 if the ith agent can access
the position of the leader and ai0 = 0 otherwise; analo-
gously, bi0 > 0 in case that the agent i can obtain the ve-
locity information of the leader and bi0 = 0 otherwise.

Denote

x̄i = xi − x0, v̄i = vi − v0, (8)

as the tracking error between the followers and the leader.
Then, from (1) and (2), one obtains the following error
dynamical system:

˙̄xi = v̄i,

˙̄vi = ui +di −a0(t). (9)

Moreover, using (3), (4), (5) and (7), the closed loop sys-
tem is given as

˙̄xi =v̄i,

˙̄vi = ∑
j∈N p

i

ai j(x j − xi)+ai0(x0 − xi)+ ∑
j∈N v

i

bi j(v j − vi)

+bi0(v0 − vi)+Fiei. (10)

Let

x̄ =
[
x̄T

1 x̄T
2 · · · x̄T

N

]T
,

v̄ =
[
v̄T

1 v̄T
2 · · · v̄T

N

]T
,

e =
[
eT

1 eT
2 · · · eT

N

]T
,

we obtain the global tracking error dynamical system as
follows:

˙̄x = v̄,
˙̄v =−[(Lp +△p)⊗ In]x̄− [(Lv +△v)⊗ In]v̄+Fe,

ė = (E −KF)e, (11)

where Lp and Lv are the Laplacian matrices of G p and Gv,
respectively, and

△p = diag(a10, · · · ,aN0),

△v = diag(b10, · · · ,bN0),

X = blockdiag(X1, · · · ,XN),X = E,F,K.

Before proceeding further, we cite the following Lemma.

Lemma 2 [39]: Suppose that the undirected networks
G p and Gv are connected, and there exist ai0 > 0 and b j0 >
0 for some i, j ∈ {1, · · · ,N}. Then, Lp +△p and Lv +△v

are two positive definite matrices.

Now, we are ready to state the main result of this sub-
section.

Theorem 1: For the multi-agent systems consisting of
(1)-(3), the problem of consensus tracking can be achieved
under the disturbance observer (4) and consensus proto-
col (7), if the gain matrix Ki is chosen such that Ei −KiFi

is Hurwitz, and the undirected networks G p and Gv are
connected, and there exist ai0 > 0 and b j0 > 0 for some
i, j ∈ {1, · · · ,N}.

Proof: To show that the consensus tracking error x̄ and
v̄ asymptotically converge to zero, a Lyapunov function
candidate for system (11) is constructed as follows:

V0 =
1
2

x̄T [(Lp +△p)⊗ In]x̄+
1
2

v̄T (IN ⊗ In)v̄+ εeT Pe,

(12)
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where P > 0 is the solution to the following Lyapunov
equation

P(E −KF)+(E −KF)T P =−I, (13)

and ε is a positive real number satisfying ε ≥ ∥(IN⊗Im)F∥2

λmin(Lv+△v)

with λmin(Lv +△v) is the smallest eigenvalue of Lv +△v.
From Lemma 2 and eq. (12), one knows that V0 is positive
definite and radically unbounded.

Then, the derivative of V0 along system (11) is

V̇0(t) =− v̄T [(Lv +△v)⊗ In]v̄+ v̄T (IN ⊗ In)Fe− εeT e

≤−λmin(Lv +△v)∥v̄∥2 +
λmin(Lv +△v)

2
∥v̄∥2

+
∥(IN ⊗ In)F∥2

2λmin(Lv +△v)
∥e∥2 − ε∥e∥2

≤− λmin(Lv +△v)

2
∥v̄∥2 +

∥(IN ⊗ In)F∥2

2λmin(Lv +△v)
∥e∥2

− ε∥e∥2

≤− λmin(Lv +△v)

2
∥v̄∥2 − ε

2
∥e∥2. (14)

In view of (14), we have V̇0 ≤ 0 and V̇0 ≡ 0 if and only
if v̄ ≡ 0 and e ≡ 0. Thus, from (11), one also has x̄ ≡ 0.
Therefore, it follows from Lasalle’s invariance principle
that limt→∞ ∥xi(t)− x0(t)∥ = 0, limt→∞ ∥vi(t)− v0(t)∥ =
0,∀i = 1,2, · · · ,N. This completes the proof.

3.2. Consensus tracking with disturbances generated
from heterogeneous nonlinear exosystems

In this section, we assume that the disturbance di, i ∈ F ,
is generated by the following heterogeneous nonlinear ex-
osystem

ξ̇i = Eiξi +ϕi(ξi),

di = Fiξi, i ∈ F , (15)

where ξi ∈Rqi is the state of the nonlinear exosystem (15),
the matrix pair (Ei,Fi) is observable, and ϕi(ξi) is a glob-
ally Lipschitz function, i.e., there exists a positive constant
cϕi > 0 , such that

∥ϕi(ξi1)−ϕi(ξi2)∥ ≤ cϕi∥ξi1 −ξi2∥, (16)

for any ξi1,ξi2 ∈ Rqi .

Remark 2: Note that, for the nonlinear exosystems
(15), it is assumed that the nonlinear term ϕi(·) satisfies
the condition (16). Nevertheless, this assumption is not
restrictive as it might appear to be, since many practical
systems satisfy such condition and it is a standard assump-
tion in the literature [40, 41].

In this case, a dynamic-gain-based disturbance observer
is proposed as

żi =(Ei −KiFi)(zi +Kivi)−Kiui +ϕi(zi +Kivi)

+Q−1
i ζiei,

ζ̇i =eT
i ei,

ei =ξi − ξ̂i,

ξ̂i =zi +Kivi, (17)

d̂i =Fiξ̂i,

where zi ∈Rqi is the state of the disturbance observer (17),
Ki is the observer gain matrix that will be specified later,
ζi is the so-called dynamic gain [42], ξ̂i and d̂i denote the
estimates of ξi and di, respectively.

Then, one gets

ėi = (Ei −KiFi)ei +ϕi(ξi)−ϕi(ξ̂i)−Q−1
i ζiei. (18)

Remark 3: Just as stated in Remark 1, in contrast to the
disturbance observer in [33] which require the knowledge
of both xi and vi, the disturbance observer (17) depends
on only the information of vi, and thereby is more suitable
for applications. Moreover, for the case of nonlinear ex-
osystem, the estimation error system (18) involves some
nonlinear terms ϕi(ξi)− ϕi(ξ̂i), and it is difficult to han-
dle such nonlinearity by using constant gain. That is why
we resort to dynamic gain technique for constructing the
disturbance observer.

Remark 4: It should be noted that, for dealing with
the nonlinear terms in (15), some investigations have been
presented via fuzzy and piecewise-affine approximation
methods in [43] and [44], respectively. Therefore, how
to combine the disturbance observer design and fuzzy/
piecewise-affine approximation methods for solving the
cooperative disturbance rejection problem caused by the
nonlinear exosystems is an interesting topic and will be
our future considerations.

Then, following the similar ideas of that in [33], we
have the following Lemma.

Lemma 3: The estimation error system (18) is globally
asymptotically stable if the gain matrix Ki is selected such
that the matrix Ei −KiFi is Hurwitz, and Qi is the positive
definite matrix solution of the following Lyapunov equa-
tion:

Qi(Ei −KiFi)+(Ei −KiFi)
T Qi =−I. (19)

Moreover, there is a Lyapunov function candidate Vi for
(18) satisfying

V̇i ≤−ε∥ei∥2, (20)

with ε > 1.

Now, the consensus tracking protocol for the ith agent
is designed as follows:

ui = ∑
j∈N p

i

ai j(x j − xi)+ai0(x0 − xi)+ ∑
j∈N v

i

bi j(v j − vi)
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+bi0(v0 − vi)+a0(t)− d̂i, (21)

where the control gain ai0 > 0 if the ith agent can access
the position of the leader and ai0 = 0 otherwise; analo-
gously, bi0 > 0 in case that the agent i can obtain the ve-
locity information of the leader and bi0 = 0 otherwise.

With the consensus tracking protocol (21), the system
(1) can be written as

ẋi =vi,

v̇i = ∑
j∈N p

i

ai j(x j − xi)+ai0(x0 − xi)+ ∑
j∈N v

i

bi j(v j − vi)

+bi0(v0 − vi)+a0(t)+Fiei. (22)

Furthermore, let

x̄i = xi − x0,

v̄i = vi − v0,

x̄ =
[
x̄T

1 x̄T
2 · · · x̄T

N

]T
,

v̄ =
[
v̄T

1 v̄T
2 · · · v̄T

N

]T
, (23)

it follows from (2), (22) and (23) that

˙̄x = v̄,
˙̄v =−(Hp ⊗ Im)x̄− (Hv ⊗ Im)v̄+Fe,

ėi = (Ei −KiFi)ei +ϕi(ξi)−ϕi(ξ̂i)−Q−1
i ζiei, (24)

where

Hp = Lp +∆p,

Hv = Lv +∆v,

F = blockdiag(F1, · · · ,FN).

With the above analysis, the following result is estab-
lished.

Theorem 2: The problem of consensus tracking of the
multi-agent systems consisting of (1), (2) and (15) is
solved by the control law (21) based on the disturbance
observer (17), if the observer gain Ki is given such that
the matrix Ei − KiFi is Hurwitz and the undirected net-
works G p and Gv are connected, and there exist ai0 > 0
and b j0 > 0 for some i, j ∈ {1, · · · ,N}.

Proof: For the system (24), consider the following Lya-
punov function candidate

V (t) =
1
2

x̄T [(Lp +∆p)⊗ Im]x̄+
1
2

v̄T (IN ⊗ Im)v̄+
N

∑
i=1

Vi,

(25)

where Vi is the Lyapunov function candidate satisfying the
inequality (20). According to Lemma 2 and eq. (25),
it follows that V is positive definite and radically un-
bounded.

Then, the derivative of V along the system (24) is given
as

V̇ (t) =− v̄T [(Lv +∆v)⊗ Im]v̄+ v̄T (IN ⊗ Im)Fe+
N

∑
i=1

V̇i

≤−λmin(Lv +∆v)∥v̄∥2 +
λmin(Lv +∆v)

2
∥v̄∥2

+
∥(IN ⊗ Im)F∥2

2λmin(Lv +∆v)
∥e∥2 − ε

N

∑
i=1

∥ei∥2

≤− λmin(Lv +∆v)

2
∥v̄∥2 +

∥(IN ⊗ Im)F∥2

2λmin(Lv +∆v)
∥e∥2

− ε∥e∥2

≤− λmin(Lv +∆v)

2
∥v̄∥2 − ε

2
∥e∥2, (26)

where ε is selected as ε > max{1, ∥(IN⊗Im)F∥2

λmin(Lv+∆v)
}.

According to (26), one obtains that V̇ ≤ 0 and V̇ ≡ 0
if and only if v̄ ≡ 0 and e ≡ 0. Therefore, by (24),
we also have x̄ ≡ 0. As a result, it follows from
Lasalle’s invariance principle that limt→∞ ∥xi(t)−x0(t)∥=
0, limt→∞ ∥vi(t)− v0(t)∥ = 0,∀i = 1,2, · · · ,N. This com-
pletes the proof.

Remark 5: It is worth noting that, many practical in-
dividual systems, especially lots of mechanical systems
[45], can be described by second-order dynamics (1), for
example, Lagrangian motion dynamics and robotic sys-
tems [46], pendulums [47], and harmonic oscillators [48].
On the other hand, the disturbance produced by the lin-
ear exosystem (3) is actually harmonic signal with known
frequency but unknown amplitude and phase; therefore,
the linear exosystem (3) can be employed to depict some
kinds of disturbances in engineering applications [49].
Moreover, the nonlinear exosystem (15) is more general,
and includes the linear one (3) as a special case; further-
more, it is obviously that one nonlinear exosystem will be
capable of creating more exogenous signals than a linear
one can [50], which implies that such generalization is of
practical signifcance.

Remark 6: In this paper, we extend the results for con-
sensus tracking of second-order multi-agent systems with
exogenous disturbance under same position and veloc-
ity interaction topologies in [31, 33] to a more general
case where the position and velocity interaction among
the agents are modeled by different topologies. How-
ever, compared with [31, 33], new disturbance observers,
which only need the velocity information of the agents,
are proposed to compensate the disturbances generated
from exosystems. Furthermore, the consensus problem
of multi-agent systems with exogenous disturbances un-
der heterogenous position and velocity topologies can be
solved by the proposed control protocol, which include the
results given in [31, 33] as special cases.

Remark 7: It should be noted that, in this paper, we
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mainly focus on the consensus tracking problem of second
order multi-agent systems under undirected heterogenous
position and velocity topologies. In order to show that the
proposed design method is also effective when the com-
munication topologies are directed or Markovian switch-
ing networks, how to construct some appropriate Lya-
punov functions for the cases with directed heterogenous
position and velocity topologies or Markovian switching
networks are some other interesting topics for future work.

4. NUMERICAL SIMULATIONS

In this section, two simulation examples are presented
to illustrate the effectiveness of the proposed disturbance
observers and control protocols.

Example 1: Consider the multi-agent systems com-
posed of (1) and (2) with 4 followers and 1 leader. Assume
that the disturbances in (1) are generated by the linear ex-
osystems as follows:

ξ̇i =

[
0 i
−i 0

]
ξi,

di =
[
1 0

]
ξi, i = 1,2,3,4. (27)

and the leader with varying velocity is modeled by

ẋ0 = v0,

v̇0 = sin(t). (28)

From (27), one knows that Ei =

[
0 i
−i 0

]
,Fi =

[
1 0

]
,

and (Ei,Fi) is observable. For illustration, assume that the
communication topologies of position and velocity among
the leader and followers are depicted in Fig. 1. From
Fig. 1, one knows that G p and Gv are connected, a10 > 0
and b20 > 0. Therefore, by Theorem 1, the proposed
disturbance observer (4) and control protocol (7) can
solve the consensus tracking problem of the multi-agent
systems composed of (1) and (2) with the disturbance
generated from linear exosystems (27). In the simulation,
set the observer gain as K1 =

[
1.3522 0.4142

]T
,K2 =[

1.3944 0.2361
]T

,K3 =
[
1.4049 0.1623

]T
,K4 =[

1.4088 0.1231
]T . The simulation results are shown

in Fig.2 and Fig. 3. The initial states of the linear ex-
osystems, and the initial positions and velocities of agents
are chosen randomly from [−5,5]. The initial states of
the disturbance observer are chosen as 0. From Fig.2 and
Fig. 3, it can be seen that, when the position and velocity
measurements are communicated over different network
topologies, the proposed disturbance observer and control
protocol can make the follower agents’ positions and ve-
locities reach consensus with the leader agent’s position
and velocity, respectively.

Example 2: In this example, we consider the consen-
sus tracking problem of multi-agent systems (1)-(2), and

Fig. 1. Communication topologies of position and veloc-
ity among the leader and followers.

Fig. 2. Positions consensus among the leader and follow-
ers under (4) and (7).

Fig. 3. Velocities consensus among the leader and follow-
ers under (4) and (7).

the communication graph of the position and velocity
among the leader and followers are also shown in Fig. 1.
Here, different from Example 1, the disturbances are pro-
duced from the following nonlinear exosystems[

ξ̇i1

ξ̇i2

]
=

[
0 i
−i 0

][
ξi1

ξi2

]
+

[
0

isin(ξi1)

]
,
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Fig. 4. Position Velocities consensus among the leader
and followers under (17) and (21).

di =
[
1 0

][ξi1

ξi2

]
, i = 1,2,3,4. (29)

Now, according to Lemma 3 and Theorem 2, under het-
erogenous position and velocity topologies, the multi-
agent systems (1)-(2) with disturbances generated by non-
linear exosystems (29) can achieve consensus. In the sim-
ulation, select the same observer gain matrix Ki as in Ex-
ample 1, and then solve the Lyapunov equation (19), we
obtain the matrix gain Qi as

Q1 =

[
0.8927 −0.5
−0.5 1.1093

]
, Q2 =

[
0.7595 −0.25
−0.25 0.8352

]
,

Q3 =

[
0.7311 −0.1667
−0.1667 0.7676

]
, Q4 =

[
0.7207 −0.125
−0.125 0.7419

]
.

The initial states of the nonlinear exosystems and the
multi-agent systems are chosen randomly from the inter-
val [−5,5], while the initial states of the disturbance ob-
server (17) are selected as 0. The simulation results are
presented in Fig. 4 and Fig. 5, which indicate that the con-
sensus tracking problem of multi-agent systems (1) and
(2) in the presense of disturbances generated from nonlin-
ear exosystems (29) is achieved via the proposed distur-
bance observer (17) and control protocol (21).

5. CONCLUSIONS

Under heterogenous position and velocity topologies,
the consensus tracking problem of second order multi-
agent systems was considered in the presense of distur-
bances generated from linear exosystems and nonlinear
exosystems, respectively. For each case, disturbance ob-
server was presented, which is independent of the posi-
tion measurement of the agents. Furthermore, with the aid
of disturbance observers, control protocols and sufficient
conditions for achieving consensus were proposed. The

Fig. 5. Velocities consensus among the leader and follow-
ers under (17) and (21).

effectiveness of the proposed results were verified through
simulation results.
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